

DT-003-001212 Seat No. _____

B. Sc. (Sem. II) (CBCS) Examination

April / **May** - **2015 Statistics** (Elective - 1)

Faculty Code : 003 Subject Code : 001212								
Tin	Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]							
Ins	truct	ions	(ii) Q. No. 2 a (iii) Write the	and 3 each answer of	arks. carry 25 marks. MCQ in answer sheet. cate marks of that question.			
1	Mul	ltiple	choice question:		20			
(1) Which of the following represents (A) first quartile (B)		s median ?						
		(A)	first quartile	(B)	fifth percentile			
		(C)	sixth decile	(D)	none of these			
(2) If the grouped data has ope		s open end	classes, one can calculate					
		(A)	median	(B)	mode			
		(C)	quartile	(D)	all of these			
	(3)	Sun	n of the deviation	about mear	n is:			
		(A)	zero	(B)	minimum			
		(C)	maximum	(D)	one			
(4) Which of the following		is unit les	ss measure of dispersion?					
		(A)	standard deviation	n				
		(B)	mean deviation					
		(C)	coefficient of varia	ation				
(D) range								

	(A) mean (B) median
	(C) mode (D) zero
(6)	An empirical relation between standard deviation, mean deviation about mean and quartile deviation is:
	(A) $4SD=6MD=5QD$
	(B) $4SD=5MD=6QD$
	(C) $6DS=5MD=4QD$
	(D) $5SD=4MD=6QD$
(7)	If the mean and standard deviation of A and B are as $\overline{X}_A = 20.99$, $\overline{X}_B = 21.81$, $\sigma_A = 4.88$ and $\sigma_B = 7.07$ which of the two series is more consistent
	(A) series A
	(B) series B
	(C) series A and series B are equally consistent
	(D) none of these
(8)	If a constant value 7 is subtracted from each observation of a set, the variance is
	(A) reduced by 7
	(B) reduced by 49
	(C) unaltered
	(D) increased by 49
(9)	For a positively skewed distribution, the correct relation between mean, median and mode is:
	(A) mean=median=mode
	(B) median>mean>mode
	(C) mean>median>mode
	(D) mode>mean>median

(5) Mean deviation is minimum when deviation are taken from:

(10)	If mean, standard deviation and coefficient of skewness of a frequency distribution are 24.78, 6.3 and -0.03 respectively, approximate value of the mode of frequency distribution is:					
	(A)	80	(B)	25		
	(C)	78	(D)	52		
(11)	A ti	me series is a set of dat	a rec	corded		
	(A)	periodically				
	(B)	at time or space interva	als			
	(C)	at successive points of t	ime			
	(D)	all of these				
(12)		component of a time ser fluctuation is :	ies w	hich is attached to short-		
	(A)	seasonal variation				
	(B)	cyclic variation				
	(C)	irregular variation				
	(D)	all of these				
(13)	Seas	sonal variation means the	e var	iations occurring within:		
	(A)	a number of years				
	(B)	parts of the year				
	(C)	parts of the months				
	(D)	none of these				
(14)	The	weights used in Laspeyr	e's p	rice index are denoted as:		
	(A)	q_0	(B)	q_1		
	(C)	p_0	(D)	p_1		
(15)	If \(\sum_{\text{1}}	$\sum p_0 q_1 : \sum p_1 q_0 = 3:4$ then w	hat '	will be the Paache's index		
	(A)	0.75	(B)	75		
	(C)	130.3	(D)	133.33		

(16)	is the formula for	or $\Delta^2 y_1$ in the formula of values
	of y.	_
	(A) $y_3 - 2y_2 + y_1$	
	(B) $y_3 + 2y_2 - y_1$	
	(C) $y_3 - 2y_1 + y_0$	
	(D) none of these	
(17)	If $y_1 = -5$, $y_2 = -1$, $y_3 = -1$	= 6 and $\Delta^2 y_2 = 4$, value of
	<i>y</i> ₄ =	
	(A) 17	(B) 13
	(C) 12	(D) none of these
(18)	If $\Delta^2 y_1 = 3$ and $\Delta y_1 = 4$, th	e value of $\Delta y_2 = \underline{\hspace{1cm}}$
	(A) 3	(B) -5
	(C) 7	(D) none of these
(19)	Which of the following form of $5^{\rm th}$ column ?	nula is used to add first 10 rows
	(A) = sum(E1:E10)	
	(B) = $autosum(E1:E10)$	
	(C) = sum(J1:J10)	
	(D) = sum(F1:F10)	
(20)	Content of the cell A4 is a cell B4 if we write = if(A>	30. Excel will display in =30, "Pass", "Fail")
	(A) Fail	(B) Pass
	(C) Error	(D) none of these

2 (a) Answer the following question: (any three) 6

- (i) Explain: measure of central tendency.
- (ii) What is time series?
- (iii) Explain MS Excel function MODE() with example.
- (iv) If the mean of 20 observations is 25 and coefficient of variation is 15%, find variance of the observations.
- (v) If $I_L = 100$ and $I_F = 1.5I_L$ then find I_p .
- (vi) Find the estimate of y_6 for x = 6 from the following data:

x	5	6	7	8
y_x	20	?	44	59

(b) Answer the following question: (any three) 9

- (i) Why measures of dispersion?
- (ii) Define Time Reversal test and show that Fisher's Index Number satisfy it.
- (iii) Explain MS Excel function with example : AVERAGE(), AVEDEV().
- (iv) If the arithmetic mean of two numbers is 10 and their geometric mean is 8, find their Harmonic mean and also find the number.
- (v) In a frequency distribution, if $3Q_3 = 5Q_2 = 8Q_1 = 240$, find its coefficient of skewness.
- (vi) If $u_x = x^2 + 1$ find $\Delta^2 u_x$.

(c) Answer the following question: (any two)

10

- (i) Among the measures of central tendency, which measure do you consider to be ideal? Why?
- (ii) Explain components of time series in detail.
- (iii) State the uses and limitation of cost of living Index Number.
- (iv) For a sequence of 100 observations the mean and the standard deviation are 40 and 10 respectively. In calculating these measures two observations were taken as 30 and 70 instead of 3 and 27 by mistake. Find the corrected mean and corrected standard deviation.
- (v) If $y_0 = 5$, $y_2 = 8$, $y_4 = 10$, $y_6 = 20$ find the estimate of y_5 by Lagrange's formula.
- 3 (a) Answer the following question: (any three)

6

- (i) Explain MS Excel function MEDIAN () with example.
- (ii) What is time series analysis? Write its untilities.
- (iii) The rank of a student in a class of 35 students is4. Find the percentile rank of the student.
- (iv) For 20 observations of a data, If $2\overline{x} = 16S = 120$ and $\sum |x_i \overline{x}| = 8S$, find coefficient of Mean deviation and coefficient of variation.
- (v) If $y_1 = -5$, $y_2 = -1$, $y_3 = 6$ and $\Delta^2 y_2 = 4$, find y_4 .

(vi) If the index number of Laspeyre is 133.2 then find the value of x from the following data:

Commodity	Bas	e year	Current year	
	Price	Quantity	Price	
P	5	12	8	
Q	18	10	x	
R	13	20	15	

- (b) Ansser the following questions: (any three)
 - (i) Explaim MS Excel function with example : STDEVP(), if()
 - (ii) Define Factor Reversal test and show that Fisher's Index Number satisfies it.
 - (iii) For the two observations, arithmetic mean is 14 more than their geometric mean. If the ratio of two observations is 1:9. Find the two observations.
 - (iv) If 5th decile of observations $x, \frac{x}{5}, \frac{x}{2}, \frac{x}{4}, \frac{x}{3}$ is 30, where x > 0. Find the value of x.
 - (v) If Quartile deviation of a data is 10 and coefficient of Quartile deviation is 0.4, find its quartiles.
 - (vi) If $u_{41} = 13$, $u_{42} = 17$, $u_{42} = 20$, $u_{44} = 26$, $u_{45} = 33$, find the value of u_{46} .
- (c) Answer the following question: (any two) 10
 - (i) Which is the best measure among all measures of dispersion ? Why ?

9

- (ii) 'Index number is the barometer of the economy of a country'. Elucidate this statement giving the use of Index Number.
- (iii) In a B.Sc. Semester-II class of 40 students, X gets the third rank and in another class of 60 students of the same standard Y gets the 5th rank. Comapre the results of X and Y.
- (iv) If for n observations $\sum x_i^2 = 800$, $\sum x_i = 80$, and the coefficient of variation 50%, find the value of n.
- (v) From the data given in the following table estimate the values of unknown quantity y_2 and y_5 correspoding to x=3 and x=5 by the method of the Binomial Expansion:

x	2	3	4	5	6
y_x	7	?	10	?	20